Abstracts Engineering

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Evaluation of a Gamma Titanium Aluminide for Hypersonic Structural Applications

by Carrell Elizabeth Weeks

Institution: Georgia Tech
Department: Mechanical Engineering
Degree: MS
Year: 2005
Keywords: Gamma titanium aluminides; Metallic composites Thermal fatigue; Titanium alloys Thermal fatigue; Space vehicles Design and construction
Posted:
Record ID: 1767909
Full text PDF: http://hdl.handle.net/1853/6955


Abstract

Titanium matrix composites have been extensively evaluated for their potential to replace conventional superalloys in high temperature structural applications, with significant weight-savings while maintaining comparable mechanical properties. The purpose of this investigation is the evaluation of a gamma titanium aluminide alloy with nominal composition Ti-46.5Al-4(Cr,Nb,Ta,B)at.% as a matrix material for use in intermediate temperature applications (400-800㩠in future aerospace transportation systems, as very light-weight structures are needed for cost and weight reduction goals. Mechanical characterization testing was performed over the potential usable temperature range (21-800㩮 Thermal expansion behavior was evaluated, as thermal mismatch of the constituents is an expected problem in composites employing this matrix material. Monotonic testing was conducted on rolled sheet material samples to obtain material properties. The alloy exhibited good strength and stiffness retention at elevated temperatures, as well as improved toughness. Monotonic testing was also conducted on specimens exposed to elevated temperatures to determine the degradation effects of high temperature exposure and oxidation. The exposure did not significantly degrade the alloy properties at elevated temperatures; however, room temperature ductility decreased. Analytical modeling using AGLPLY software was conducted to predict the residual stress state after composite consolidation as well as the potential mechanical behavior of [0]4 laminates with a 㭍ET matrix. Silicon carbide (Ultra-SCS) and alumina (Nextel 610) fibers were selected as potential reinforcing materials for the analysis. High residual stresses were predicted due to the thermal mismatch in the materials. Laminates with Nextel 610 fibers were found to offer the better potential for a composite in this comparison as they provide a better thermal match. Coupons of SCS-6/㭍ET were manufactured with different volume fractions (10% and 20%). Both manufacturing attempts resulted in transverse cracking in the matrix from the residual thermal stress.

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Relevant publications

Book cover thumbnail image
Predicting the Admission Decision of a Participant...
by Yigit Ozsert, Gozde
   
Book cover thumbnail image
Development of New Models Using Machine Learning M...
by Akgol, Derman
   
Book cover thumbnail image
The Adaptation Process of a Resettled Community to... A Study of the Nubian Experience in Egypt
by Fahmi, Wael Salah
   
Book cover thumbnail image
Development of an Artificial Intelligence System f...
by Chand, Praneel
   
Book cover thumbnail image
Theoretical and Experimental Analysis of Dissipati...
by Latour, Massimo
   
Book cover thumbnail image
Optical Fiber Sensors for Residential Environments
by García-Olcina, Raimundo
   
Book cover thumbnail image
Calibration of Deterministic Parameters Reassessment of Offshore Platforms in the Arabian ...
by Zaghloul, Hassan
   
Book cover thumbnail image
How Passion Relates to Performance A Study of Consultant Civil Engineers
by Cadieux, Trevor J.