Abstracts Biological Sciences

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Développements d’algorithmes d'apprentissage machine pour l'analyse automatique de données biophysiques de haute résolution : Development of machine learning algorithms for the automatic analysis of high resolution biophysical datasets

by Laura Duciel

Institution: Université de Strasbourg
Department: Biotechnologies
Degree: Docteur es
Year: 2022
Keywords: Spectrométrie de masse; Résonance magnétique nucléaire; Apprentissage automatique; Big Data; Automatisation; Mass Spectrometry; Nuclear Magnetic Resonance; Machine Learning; Big Data; Automatization; 571.4; 006.3
Posted: 3/25/2025
Record ID: 2233483
Full text PDF: http://www.theses.fr/2022STRAJ065


Abstract

La spectrométrie de masse (MS) et la résonance magnétique nucléaire (RMN) sont deux techniques courantes en biologie avec de nombreuses applications pharmaceutiques, environnementales ou moléculaires. La taille des données ne cesse d'augmenter et il devient difficile de les analyser manuellement. De nouveaux outils pour automatiser le traitement et l'analyse sont nécessaires. Le Machine et le Deep Learning (ML/DL) sont les principaux outils disponibles pour l'automatisation dans ce domaine. Le ML comprend différents algorithmes de régression, clustering, classification ou réduction de la dimensionnalité. Ces algorithmes construisant un modèle afin de prédire à partir de données sont principalement utilisés pour l'analyse de big data. Les algorithmes DL sont un type spécifique d'algorithmes ML dans lesquels l'extraction des caractéristiques à analyser est automatisée. Ces outils sont ici appliqués aux domaines de la RMN et de la MS à travers différents projets de la thèse de doctorat. Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) are two techniques used in biology with many pharmaceutical, environmental or molecular applications. Datasets sizes are continuously increasing and become hard to manually analyze. New tools to automatize the big data processing and analysis are thus required. Machine Learning (ML) and Deep Learning (DL) are the main tools available to create automatization in that domain. ML includes different algorithms for regression, clustering, classification or dimensionality reduction. These algorithms, building a model function and predicting from data, are mainly used for the analysis of large datasets. DL algorithms are a specific kind of ML algorithms in which feature extraction is also automated. These tools are applied during this work into NMR and MS domains through different projects realized during this PhD Thesis.

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Relevant publications

Book cover thumbnail image
Physiological and Antioxidant Properties of Centel...
by Hassan, Halgoord
   
Book cover thumbnail image
A Neuron-Specific Protein found in Skeletal Muscle New Frontiers for GAP-43
by Pilla, Raffaele
   
Book cover thumbnail image
Bismuth-Ethanedithiol A Potential Drug to Treat Biofilm Infections of Me...
by Gunawardana, Jithendra
   
Book cover thumbnail image
The Effect of Ozone on the Growth and Development ...
by Yadav, Lekha
   
Book cover thumbnail image
Biocontrol of Cereal Pathogens
by Gautam, Shivaditya
   
Book cover thumbnail image
An Investigation of the Mechanism of PAX7 Mediated...
by Mitchell, Maika Graceina
   
Book cover thumbnail image
Ecological Study of the Role of Highly Processed M...
by Norgauer, Carl Hans
   
Book cover thumbnail image
Farmers' Rural Community Attachment A Structural Symbolic Interactionist Explanation
by Sanner, Forrest L.