Abstracts Earth and Environmental Sciences

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Collisions of Super-Earth and Sub-Neptune Planets.

by Thomas R Denman

Institution: University of Bristol
Department: School of Physics
Degree: PhD
Year: 2022
Keywords: Planets; Collision; Super-Earth; Atmospheres; Simulation
Posted: 3/25/2025
Record ID: 2251210
Full text PDF: https://research-information.bris.ac.uk/en/studentTheses/62ddfdeb-34b9-4963-bf1f-13bd1b737588


Abstract

More than half of the planets so far discovered have masses between Earth and Neptune. These ‘Super-Earth’ planets have a wide array of densities. These planets are sufficiently massive to be able to accrete significant low density hydrogen atmospheres during formation. Post-formation they may experience density enriching erosive processes. One such erosive process is collision. After proto-planetary disc dissipation planet orbits can become unstable, leading to a period of giant impacts. These collisions preferentially eject lighter material, increasing the planet’s density. An example of a system with planets which experienced collisional density enrichment is Kepler-107. Kepler-107c is substantially denser than its closer orbiting neighbour Kepler-107b (12.65 g cm³ as opposed to 5.3 g cm³), despite probable similar formation environments. Other erosive phenomena, e.g. photo-evaporation, are unlikely as they would affect Kepler-107b more strongly. In chapter 3 of this thesis I present simulations that show collisions can produce Kepler-107c’s enriched density. In the rest of this thesis I examine more general simulations of Super-Earth collisions, focusing specifically on atmospheres. I show the boundary between planets merging together and bouncing off one another strongly correlates with the escape velocity from the point of closest approach. In general I find, while it requires little energy to cause some of the atmosphere to be ejected, total atmosphere ejection requires sufficient energy that the collision will also eject a significant fraction of mantle. Due to the ease of atmosphere removal, I find that all simulated collisions result in a change in both mass and composition, resulting in a corresponding increase in final planet density. These results underline the importance of giant impacts in explaining the observed Super-Earth density diversity.

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Relevant publications

Book cover thumbnail image
Scientific Approach Principle for New Resilient Co... Revitalizing Revere Beach, MA - A Case Study for F...
by Kianous, Anahita
   
Book cover thumbnail image
Growth and Productivity of Winter Maize (Zea mays ...
by Shrestha, Jiban
   
Book cover thumbnail image
Hydrological Forecasting with Radar and the Probab...
by Adediran, Gbotemi Abraham
   
Book cover thumbnail image
Agricultural Innovation in Rural India The Paradox of Farmer Nonadoption in Bajwada, Madh...
by Malpani, Natasha
   
Book cover thumbnail image
The Parameters Limiting the Effectiveness of Cumul...
by Taylor, Duncan
   
Book cover thumbnail image
Subsurface Evaluation of Source Rock and Hydrocarb...
by Iheanacho, Ugochukwu Princewill
   
Book cover thumbnail image
Structural and Seismic Facies Interpretation of Fa...
by Olowoyo, Kehinde Oluwatoyin
   
Book cover thumbnail image
Effect of Temperature and Impurities on Surface Te...
by Udeagbara, Stephen Gekwu